- determining a deformation of an inner layer of the second region of the tissue in the pre-operative imaging data based on the identified correspondences by applying the biomechanical model with the personalized biomechanical parameters.
- 2. The method as recited in claim 1, wherein extracting personalized biomechanical parameters from a first region of tissue of a patient in an inverse problem of the biomechanical model using pre-operative imaging data and intra-operative imaging data comprises:
 - determining an initial deformation in the first region of the tissue in the pre-operative imaging data by applying the biomechanical model with standard biomechanical parameters;
 - comparing the initial deformation in the first region of the tissue in the pre-operative imaging data with the first region of the tissue in the intra-operative imaging data; and
 - iteratively updating biomechanical parameters of the biomechanical model based on the comparing to extract the personalized biomechanical parameters.
- 3. The method as recited in claim 2, wherein the standard biomechanical parameters include biomechanical parameters determined based on a population of patients.
 - **4**. The method as recited in claim **1**, wherein:
 - the first region of the tissue is a region of higher imaging accuracy in the inner layer of the tissue in the intraoperative imaging data, and
 - the second region of the tissue is a region of lower imaging accuracy in the inner layer of the tissue in the intra-operative imaging data.
 - 5. The method as recited in claim 1, wherein:
 - the outer layer of the tissue includes a cortical layer of a brain of the patient, and
 - the inner layer of the tissue include a subcortical layer of the brain of the patient.
- 6. The method as recited in claim 1, wherein extracting personalized biomechanical parameters from a first region of tissue of a patient in an inverse problem of the biomechanical model using pre-operative imaging data and intra-operative imaging data comprises:
 - extracting personalized tissue elasticity and Poisson ratio of the patient.
 - 7. The method as recited in claim 1, further comprising: updating the personalized biomechanical parameters based on a model of tumor growth for the patient.
 - 8. An apparatus for image registration, comprising:
 - means for extracting personalized biomechanical parameters from a first region of tissue of a patient in an inverse problem of the biomechanical model using pre-operative imaging data and intra-operative imaging data.
 - means for identifying correspondences between an outer layer of a second region of the tissue in the preoperative imaging data and the outer layer of the second region of the tissue in the intra-operative imaging data; and
 - means for determining a deformation of an inner layer of the second region of the tissue in the pre-operative imaging data based on the identified correspondences by applying the biomechanical model with the personalized biomechanical parameters.
- 9. The apparatus as recited in claim 8, wherein the means for extracting personalized biomechanical parameters from

- a first region of tissue of a patient in an inverse problem of the biomechanical model using pre-operative imaging data and intra-operative imaging data comprises:
 - means for determining an initial deformation in the first region of the tissue in the pre-operative imaging data by applying the biomechanical model with standard biomechanical parameters;
 - means for comparing the initial deformation in the first region of the tissue in the pre-operative imaging data with the first region of the tissue in the intra-operative imaging data; and
 - means for iteratively updating biomechanical parameters of the biomechanical model based on the comparing to extract the personalized biomechanical parameters.
- 10. The apparatus as recited in claim 9, wherein the standard biomechanical parameters include biomechanical parameters determined based on a population of patients.
- 11. The apparatus as recited in claim 9, wherein the means for extracting personalized biomechanical parameters from a first region of tissue of a patient in an inverse problem of the biomechanical model using pre-operative imaging data and intra-operative imaging data comprises:
 - means for extracting personalized tissue elasticity and Poisson ratio of the patient.
- 12. The apparatus as recited in claim 9, further comprising:
 - means for updating the personalized biomechanical parameters based on a model of tumor growth for the patient.
- 13. A non-transitory computer readable medium storing computer program instructions for image registration, the computer program instructions when executed by a processor cause the processor to perform operations comprising:
 - extracting personalized biomechanical parameters from a first region of tissue of a patient in an inverse problem of the biomechanical model using pre-operative imaging data and intra-operative imaging data;
 - identifying correspondences between an outer layer of a second region of the tissue in the pre-operative imaging data and the outer layer of the second region of the tissue in the intra-operative imaging data; and
 - determining a deformation of an inner layer of the second region of the tissue in the pre-operative imaging data based on the identified correspondences by applying the biomechanical model with the personalized biomechanical parameters.
- 14. The non-transitory computer readable medium as recited in claim 13, wherein extracting personalized biomechanical parameters from a first region of tissue of a patient in an inverse problem of the biomechanical model using pre-operative imaging data and intra-operative imaging data comprises:
 - determining an initial deformation in the first region of the tissue in the pre-operative imaging data by applying the biomechanical model with standard biomechanical parameters;
 - comparing the initial deformation in the first region of the tissue in the pre-operative imaging data with the first region of the tissue in the intra-operative imaging data; and
 - iteratively updating biomechanical parameters of the biomechanical model based on the comparing to extract the personalized biomechanical parameters.